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ABSTRACT 

A five-step procedure was used iri the 1990 performance simulations to construct probability distributions of the uncertain variables appearing in the mathematical models used to simulate the Waste Isolation Pilot Plant • s (WIPP' s) performance. This procedure provides a consistent approach to the construction of probability distributions in cases where empirical data concerning a variable are sparse or absent and minimizes the amount of spurious information that is often introduced into a distribution by assumptions of nonspecialists. The procedure gives first priority to the professional judgment of subject-matter experts and emphasizes the use of site-specific empirical data for the construction of the probability distributions when such data are available, In the absence of sufficient empirical data, the procedure employs the Maximum Entropy Formalism and the subj ect-mat:ter experts' subjective estimates of the parameters of the distribution to construct a distribution that can be used in a performance 
simulation. 
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EXECUTIVE SUMMARY 

6 A five-step procedure was used in the 1990 performance simulations to 
a construct probability distributions of the uncertain variables appearing in 
9 the mat'hematical models used to simulate the Waste Isolation Pilot Plant's 

10 (WIPP's) performance. Figure E-1 summarizes the steps in the procedure. 
11 

12 This procedure provides a consistent approach to the construction of 
13 probability distributions in cases where empirical data concerning a 
14 variablE\ are sparse or absent and minimizes the amount of spurious 
15 information that is often introduced into a distribution by assumptions of 
16 nonspeci.alists. The procedure gives first priority to the professional 
17 judgment: of subject-matter experts and emphasizes the use of site-specific 
18 empirical data for the construction of the probability distributions when 
19 such data are available. In the absence of sufficient empirical data, the 
20 procedure employs the Maximum Entropy Formalism and the subject-matter 
~. experts' subjective estimates of the parameters of the distribution to 
22 construct a distribution that can be used in a performance simulation. 
23 

24 

26 
21 
28 

Figure E·1. 
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The Five-Step Procedure Used to Construct Cumulative _Dist;ibuti~n Functions (~DFs) for 
the 1990 Performance Simulations. AI refers to respons1ble.mvest1gator (I.e., subject­
matter expert); MEF refers to the Maximum Entropy Formalism. 
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I. INTRODUCTION 
2 

3 The Waste [solation Pilot Plant (WIPP) is a research and development facility 
4 authorized by Congress (Public Law 96-164 [1980]) for the purpose of 

5 demonstratlng the safe management, storage, and eventual disposal of those 

6 defense-generated transuranic (TRU) wastes that the U.S. Department of Energy 

7 (DOE) may designate as requiring deep geologic disposal. The DOE has 

8 established a program (hereinafter called the WIPP Project) to conduct the 
9 scientific and engineering investigations that are necessary for the 

10 demonstrations authorized by Congress. Further background on the WIPP and the 
11 WIPP Proje•~t can be found in U.S. DOE (1980) and U.S. DOE (1990). 

12 

13 The DOE will dispose of designated TRU wastes at the WIPP repository only 

14 after demonstrating compliance with the requirements of the U.S, Environmental 

15 Protection Agency's (EPA's) Environmental Standards for the Management and 
16 Disposal o:t: Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes; 

17 Final Rule, 40 CFR Part 191, (the Standard, EPA, 1985). The part of the 

18 Standard most relevant to this report, Subpart B or the "Environmental 

19 Standards ::or Disposal," sets qualitative and numerical requirements on the 

20 postclosure performance of the WIPP. (Although Subpart B of the Standard was 

21 remanded to the EPA by the United States Court of Appeals for the First 

22 Circuit, the WIPP Project will continue to respond to the Standard as first 

23 promulgate!! until a new Standard is in place [U.S, DOE and State of New 

24 Mexico, 19Bl].) In particular, the "Containment Requirements" in§ 191.13 of 

25 Subpart :B net numerical limits on the likelihoods that cumulative releases of 
26 radioactivi_ty from the WIPP System to the accessible environment, for 10,000 

27 years after closure of the sys tern, wi 11 exceed certain prescribed levels. 

28 Demonstrating compliance with the Standard is the same as establishing a 

29 reasonable assurance that the numerical limits on the likelihoods of the 

30 prescribed levels of release specified in the Containment Requirements will 

31 not be exceeded. Further background on the Containment Requirements can be 

32 found in the Standard and in Tierney (in prep. ) . 

33 

34 In addition to specifying numerical 1 imi ts, the Containment Requirements also 

35 suggest a ~;eneral approach to the testing of compliance with the numerical 

36 limits on the likelihoods of cumulative releases of radioactivity from the 

37 disposal system. The EPA calls this general approach "performance assessment" 

38 and suggest.s that, if practicable, its end-product should be an overall 

39 probability dis tri but ion of cumulative releases of r adioac ti vi ty to the 

40 accessible environment. The published guidance for interpreting and 

41 implementing the Containment Requirements suggests that the overall 

42 probability distribution should take the form of a " ... 'complementary 

43 cumulative distribution function' that indicates the probability of exceeding 



Chapter 1: Introduction 

various levels of release" (EPA, 1985, Appendix B). In practice, estimators 
2 of such complementary cumulative distribution functions (CCDFs) are 
3 constructed by Monte Carlo simulations of the behavior of the total system 
4 during its period of performance, Background on the uses of Monte Carlo 
5 simulation in performance assessment can be found in Tierney (in prep.). 
6 

7 Monte Carlo simulations of the WIPP System require three things: (1) a suite 
8 of mathematical models (usually implemented on a computer) that can predict 
9 the amount of radioactivity released from the WIPP System when it is subject 

10 to the geologic, anthropogenic, and climatic conditions that could prevail 
11 during the period of performance; (2) an identification of the independent 
12 variables that appear in the mathematical models; and (3) the assignment of 
13 probability distributions to the sensitive independent variables in a manner 
14 that reflects the state of knowledge about the likelihood of the actual values 
15 these variables may have in the real system (Tierney, in prep.). Background 
16 on the models used in the WIPP simulations can be found in Lappin et al, 
17 (1989), Marietta et al. (1989), Rechard et al, (1990a) and other documents 
18 cited in these reports. Background on sensitivity studies of selec~ed 
19 variables of WIPP-system models can be found in Rechard et al. (1990a). The 
20 present report is concerned with the procedures that were used in 1990 to 
21 provide item 3, an assignment of probability distributions to the important 
22 independent variables of the WIPP performance models. 
23 

24 

2s Purpose of This Report 
26 

27 The WIPP Project has performed preliminary simulations of the WIPP System with 
28 the purpose of demonstrating the applicability of the methods and models it 
~ has developed for testing compliance with the Containment Requirements 
30 (Marietta et al., 1989). Rechard et al. (1990a, Appendix A) listed the 
31 approximately 240 distinct independent variables that could appear in the 
~ mathematical or computer-based models used in these simulations. Most of 
~ these variables specify the physical, chemical, or hydrologic properties of 
~ the rock formations in which the WIPP is placed; a substantial number of the 
~ variables specify physical or chemical properties of engineered materials and 
36 the waste form; some are the dimensions of engineered features of the 
37 facility, and some pertain to future climatic variability or future episodes 
38 of exploratory dri ll,ing at the WIPP. About 60 of the 240 variables are judged 
~ to warrant uncertainty analysis; preliminary ranges of variability are given 
40 for these variables in Append-ix A of Rechard e t al. ( 1990a) . 
41 

42 Preliminary simulations of WIPP performance (Marietta et al., 1989) included 
~ up to 40 of the approximately 60 uncertain variables in the Latin hypercube 
44 sampling (LHS) scheme currently being used by the WIPP Project in its 
45 Compliance Assessment Methodology Controller (CAMCON, see Rechard et al., 
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Purpose of This Report 

1989). Background on the assignment of probability density functions (PDFs) 
2 to these 'rariables can be found in Appendix C of Marietta et al. (1989), No 
3 sysJ;emati(: procedures were used to assign PDFs to these variables: the 
4 distribut:.ons were assigned by WIPP analysts largely on the basis of limited 
s data from Lappin et al. (1989), data from analogous (non-WIPP context) 
6 situationB described in the literature and, in a few instances, on the basis 
7 of the ·professional judgment of subject-matter experts, Because the 
s simulations of Marietta et al. (1989) were primarily made for demonstrational 
9 purposes, the lack of defensible and systematic procedures for the assignment 

10 of probabLlities in these studies was not a serious flaw. Subsequent review 
11 of this w<•rk clarified the need for such procedures in future simulations that 
12 would be used to test compliance with the Containment Requirements. 
13 

14 The present, brief report describes and rationalizes the systematic procedure 
15 that was used in 1990 by the WIPP Project to construct probability 
16 dis tributl.ons ( cumulative distribution functions [ CDFs] or probab ill ty density 
17 functions [PDFs]) for the uncertain independent variables in the WIPP 
18 performrln< e models. The procedure is described and applied to variables 
19 currently being sampled in the WIPP performance models in Chapter II. 
20 Technical details of the procedure are also provided in Chapter II. 
21 

22 The 1990 J>rocedure is described in this report to elicit reviewer' s comments 
23 and start the review cycle. The WIPP Project has been asked to perform 
24 iterative performance assessments semiannually, with annual documentation of 
25 these a8sE ssments, A widely acceptable final compliance assessment depends on 
26 cons true t i ve feedback from peer reviewers of each annual assessment, This 
27 brief repcrt is intended to focus some of the review efforts on a critical 
28 component of the performance-assessment process: construction of CDFs or PDFs. 
29 

30 

31 

32 

33 

34 

35 

Issues Not Addressed in This Report 

Owing to limited information and time constraints, it has 
address all the issues that are normally associated with 
probability distributions for a set of model variables. 

~ treated or only mentioned here are 
37 

not been possible to 
the construction of 
Important issues not 

M (a) Tre effects of possible dependencies among the different kinds of 
~ mcdel variables on the assignment of probability distributions to 
40 tr.ose variables; 
41 

42 (b) The role of spatial correlations in constructing probability 
43 distributions for the variables of a lumped-parameter model; 
44 
45 (c) The assignment of extreme-value probabilities to a variable on the 
46 basis of a limited number of observations of the variable; 
47 
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Chapter 1: Introduction 

(d) rhe assignment of numerical probabilities to parameters of natural and 
anthropogenic phenomena that may occur in the far future. 

Because ~f the lack of information, WIPP Project analysts have assumed that 

all of t::1e approximately 60 uncertain variables in their mathematical models 

are inde·?endent (though not identically distributed) random variables. With 

one exce:?tion (the lumped parameters specifying WIPP room hydraulic 

a conductb·ities and porosities), the possible effects of spatial correlations 

9 on reduclng the variances of the variables in certain lumped-parameter 

10 performa:1.ce models have been ignored. Owing to limited data, the extreme-

11 value pr•)babilities of most of the sensitive variables cannot be estimated 

12 with great confidence. Finally, the problem of assigning probabilities to the 

13 paramete::-s of processes and events that may occur at the WIPP in the far 

14 future i:> only beginning to be addressed. The demonstrational performance 

15 s imula til)ns (Marietta et al. , 198 9) considered scenarios for climatic change 

16 and human intrusion at the WIPP in which the climatic and intrusion parameters 

17 were assigned fixed values. Current performance simulations have attempted to 
18 introducH uncertainty in these parameters in the simplest possible ways. For 

19 the parameters of the human-intrusion scenarios, see Appendix C of Tierney (in 

20 prep.). 

21 

22 The fact that issues (a) and (b) were not addressed in the 1990 performance 

23 simulations severely limits the validity of some of the CDFs that were 

24 constructed by the procedure described in this report; further discussion of 

25 these is!mes is provided in Chapter III, 

26 
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II. PROCEDURES FOR CONSTRUCTING 
PROBABILITY DISTRIBUTIONS 

An Outline of the Procedures 

7 In 1990,, the WIPP Project constructed probability distributions for the 
a uncertain variables appearing in performance models of the WIPP System by 
s following steps 1 through 5 described below. Explanations of the meaning of 

10 underlined terms appearing in descriptions of the steps are deferred until 
11 later sections of this chapter. The acronym RI, "responsible investigator," 
12 will her·einafter mean the Sandia National Laboratory investigator who is 
13 judged to )8 the expert in the subject matter of the variable. 
14 

15 STEP 1 

16 

17 Determine ::he existence of site- specific empirical data for the variable in 
18 question; :~.e., find a documented set of site-specific sample values of the 
19 variable. If empirical data sets exist, go to Step 3; if no empirical data 
20 sets are found, go to Step 2. 
21 

22 STEP 2 

23 

24 Request thet the Ris supply a specific shape (e.g., normal, lognormal, etc.) 
25 and assoeiBted numerical parameters for the distribution of the variable. If 
26 the Ris <tssign a specific shape and numerical parameters, go to Step 5; if the 
27 Rls cannot assign a specific shape, go to Step 4. 
28 

29 STEP 3 

30 

31 Determine t:1e size of the combined empirical data sets. If the number of 
32 values in t'1.e combined data set is >3, use the combined data to construct an 

piecewise-33 

34 

35 

36 

empirical c·1mulative distribution function or, alternatively, a 
linear cumulative distribution function, and then go to Step 5. 
of variable;; in the combined data set is :S3, go to Step 4. 

If the number 

37 STEP 4 

38 

39 Request tha1: the Rls provide subjective estimates of (a) the range of the 
40 variable (i.e., the minimum and maximum values taken by the variable) and (b) 
41 if possible, one of the following (in decreasing order of preference): (1) 
42 percentile I'oints for the distribution of the variable (e.g. , the 25th, 50th, 
43 and 75th percentiles), (2) the mean value and standard deviation of the 
44 distributior, or (3) the mean value. Then, as justified by the Maximum 

II-1 



Chapter ll. Procedures for Constructing Probability Distributions 

EntrQQr Formalism (MEF), construct one of the following distributions 
2 dependlng upon the kind of subjective estimate that has been provided and go 
3 to Ste) 5. 
4 

5 A unLform distribution (PDF) over the range of the variable. 
6 

7 A :~~cewise-linear CDF based on the subjective percentiles. 
8 

9 A truncated normal distribution based on the subjective range, mean value, 
10 and ~tandard deviation. 
11 

12 A 1:rt:.ncated exponential distribution based on the subjective range and mean 
13 value. 
14 

15 STEP 5 
16 

17 End of procedures; distribution is assigned. 
18 

19 This fi-ve-step procedure was motivated by a desire to maintain as close a 
20 connectLon between situation-specific data/information and model parameters as 
21 possibl·~. Though obviously not unique, the formulation of the procedure was 
22 guided hy two axioms: (1) a probability distribution describing a variable 
23 should, to the maximum extent practicable, be constructed from empirical data 
24 and information that are site specific, and ( 2) if numerical data (i.e. , 
25 sample values for the quantity) are few or nonexistent, probability 
26 distributio-ns for that quantity should be constructed using only those 
27 subjec.tive but quantified judgments _about the quantity that are made by 
28 experts in the subject matter pertaining to the quantity. It is assumed that 
~ a subject-matter expert will take account of all relevant information, site-
30 specific or generic, in making subjective but quantified judgements about the 
31 shape of a variable's distribution. 
32 

33 Axiom 1 recognizes that empirical, system-specific data-- combined with 
34 proven t:1eoretical concepts and informed, professional interpretation of the 
35 data ~- 1re the only link between the real system and the mathematical models 
36 that are being used to study the real system's behavior. The need for Axiom 2 
37 arises when, for various reasons, numerical data for an independent variable 
38 of a mod.~l are few or entirely absent (unfortunately, this is the situation 
39 for the 1~aj ori ty of the uncertain independent variables in current WIPP 
40 performance models). When data are lacking, professional judgment is all that 
41 is left; Axiom 2 ensures that only subjective information provided by persons 
42 '"i th specialized knowledge of the variable (usually, persons other than the 
43 performance-assessment analyst) will be included in determining the form of 
44 the prob;:_bility distribution. Adherence to Axiom 2 practically dictates the 
45 use of a particular method called the Maximum Entropy Formalism (MEF, see 
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An Ou!Une of the Procedures 

below) fo1: constructing probability distributions from quantifiable subjective 
judgments. 

Empirical Cumulative Distribution Functions 

Suppose that one is given N > 3 sample values of an uncertain independent 
variable N that appears in a WIPP performance model, 

In the r·emainder of this chapter, it is assumed that the Xns are independent, 
identicall)l" distributed random variables with a common (but unknown) CDF that 
is here de::10ted by F(x). Furthermore, since all of the WIPP performance -model 
variables ,:tre positive, it will be assumed that X is a non-negative variable; 
i.e., X~ 1). (The reader should nevertheless keep in mind the ways the 
assumption of independence could fail, e.g., the possibility of a biased 
sample ariHing from intervariable and spatial correlations among different 
kinds of variables.) 

Upon ord•:!d.ng the sample data, one gets 

* ... , ~· * * with Xn 5 Xn+1 , n- 1, 2, 3, ... , N-1 

If X is an intrinsically discrete variable, or if X is intrinsically 
continuous and some of the X~s are identical (perhaps owing to the precision 
with which the original Xns were measured), the ordered sample data can be 
grouped int~ M 5 N ordered pairs, 

where (xl ,:c2 , ... XM) is the ordered set of distinct values among the X0 s and 
the fms denote the multiplicities of the Xms. For example, if X6 appears 
three times in the data set, then f6 = 3. Clearly, 1 s fm< N, and 

As an example, one can take the 15 sample values of Culebra tortuosity cited 
in Table E-9 of Lappin et al. (1989); these values become the 12 ordered 
pairs: (0.03,1), (0.04,1), (0.08,1), (0.09,3), (0.10,1), (0.12,1), (0.13,1), 
(0.14,1), (0.16,1), (0.21,2), (0.29,1), (0.33,1). 
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Chapter II; Procedures for Constructing Probability Distributions 

The .'iilll}lirical percentiles Pm associated with the sample data are defined as 
the ra1:io of the number of values in the set {Xn , 1 5 n :S N) that are less 
than o1· equal to xm, 1 :S m 5 M, to the total number of values in the set 
( - N). Using this definition, it follows that 

Pm+1 = Pm + (l/N)fm+1• Pl = f1/N 

m 
Pm- (1/N) ~ fi, 1 :Sm:SM. 

i-1 

and so 

The PmS are a nondecreasing sequence of numbers :S 1 with PM- 1. 

The gm£lrical cumulative distribution function (empirical CDF) associated with 
the sample data X1, X2, .. , , XN is the piecewise constant function here 
denoted by Fe(~) and defined for E e [0,~) by 

0 if e s xl ' 

F (0 p if X < e :'5 x 
1 ' 

m = 1,2, ' ~ . ,. M-1, c m m m+ 

1 if e > XM 

~ The empirical CDF associated with the 15 sample values of tortuosity from 
~ Table E-9 of Lappin et al. (1989) is drawn as the dotted curve on Figure II-1. 

37 

38 The empirical CDF Fc(O is an unbiased estimator (see Blom, 1989, p. 194) of 
39 the unknown distribution of the variable X (Blom, 1989, p. 216). 
40 

41 The mean value or expected value of the variable X with respect to the 
42 empirical CDF Fc(e) is here denoted by <X>c and is the same as the usual 
43 sample m'~an, that is, 
44 

j~ 
~ 
~J 
53 

54 

55 

56 

57 

61 

M 
<X>c = (1/N) ~ 

m~l 

f X 
m m 

hence ·QC·c is an unbiased estimator of the expected value of the unknown 
distribution F(x). The expected value associated with the empirical CDF for 
tortuosity in Figure II-1 is 0.14. 

The Y]U~nce of the variable X with respect to the empirical CDF Fe(~) is here 
2 denoted by s and can be computed as follows: 
c 
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M 
(1/N) ~ f [x -<X> ]

2 
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Empirical Cumulative Distribution Functions 

This is n't an unbiased estimator of the variance of X, but the quantity 

[N/(N-1)]} (the usual sample variance) is an unbiased estimator. The s 2 
c c 

5 

6 

7 

8 

associated with the empirical CDF for the tortuosity data in Figure II-1 is 
6.9 x 10- 1 ~ (hence the standard deviation sc ~ 0.083). 

1.0 -;!! 
10 ..c:: ->. 
."t: 

:c 
(13 0.5 
..Q 

2 
c.. 
Cij 

-~ ... ·a. 
E 
w o.o 

0.1)0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Tortuosity ~ t 

19 Figure 11-1. E:mpirical and Piecewise-Linear CDFs for Tortuosity Data. Coned line is empirical CDF; solid 
11 line is Piecewise-Linear CDF. 
12 
13 
14 

1s Piecewise-Linear Cumulative Distribution Functions 
16 

1S Use of an empirical CDF in practical Monte Carlo calculations may have some 
19 drawbacks. All of the sampling techniques used in Monte Carlo simulation 
20 (e.g. , random sampling, LHS) require the drawing of a number of random 
21 variates fr~m each of the distribution functions for uncertain model 
22 variables. Inspection of the example empirical CDF shown in Figure II-1 
23 reveals tha~ drawing random variates from an empirical CDF will only give back 
24 the discret'~ data points x1 ,xz , ... ,XM with respective frequencies f1/N, 
25 fz/N, ... , ::MIN as N -~o "'. Of course, this is the intended result when the 
26 variable X :~s an intrinsically discrete random variable (e. g., Xn = n could be 
27 the munber of times an event occurs in a fixed period of time). But if the 
28 variable X i.s an intrinsically continuous variable (e.g. , the spatial average 
29 of tortuos i t:y or porosity) and the points of the empirical data set { Xn, 1 :S 

30 n 5 N} art~ few and sparsely placed on the real line, it is pass ible that the 
31 sampled variates used in the simulations will always "miss" one or more of 
32 those cri1:ical values of X at which the output of the performance model could 
33 be particularly sensitive. For this reason, performance- assessment analysts 
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Chapter II: F rocedures for Constructing Probability Distributions 

prefe:r t:o sample from continuous CDFs for those variables that are known to be 
2 continu(•usly distributed. 
3 

4 The empirical CDF described above can be modified and cast into a continuous 
5 distribt.tion in several ways. Perhaps the simplest way is to draw straight 
6 lines bEtween the vertices of the empirical CDF, i.e., the points (0,0), 
7 (xl,Pl), (xz,p2), ... ,(XM,PM) on the graph of the GDF (for example, see the 
a solid lines so drawn on Figure II-1 for the tortuosity data). The piecewise-
9 linear CDF constructed in this way is here denoted by F 1 (0 and is 

10 analytically expressed by 
11 

a 0 if f :S 0, 

~ 
II 

F_e(f) p 
m-1 

f (f - X l) m m-
+ N(x - x 1) if xm-1< f s Xm' m 

m m-

1 

27 where PO - 0 and xo = 0. 
28 

l, 2, ... , M , 

29 Inspection of the example shown on Figure II-1 reveals that drawing random 
30 variates from a piecewise-linear CDF will give back a random selection of all 
31 of the values of the variable X that lie between 0 and XM, not just the 
32 original values Xl, x2, ... ,XM. The author has not found or been able to 
33 develop ~ proof that a piecewise-linear CDF constructed in this way is an 
34 unbiased estimator of the unknown distribution of the variable X. 
35 

~ The mean value or expected value of the CDF FJ!(e) is here denoted by <X>_e and 
37 can be e:o{pressed as 
38 

I 
l~ 
48 

49 

M 
<X>~- (1/N)~ f (x +X l)/2 

A: ~ m m m-
m~l 

The varLmce of the GDF F_e(O is denoted by s] and can be expressed as 

2 
s.e 

M 

(1/N) ~ fm (x! + xmxm_ 1+ x!_ 1)/3 
m=l 

The author has not found or been able to develop a proof that <X>_e and s] 

60 are unbiased estimators of the respective mean and variance of the unknown 
61 distribution F(x). For the CDF for the tortuosity data shown on Figure II-1, 
~ <X>_e = 0.13 and s] = 5.0 x 10-2. 

64 
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Piecewlse-Unear Cumulative Distribution Functions 

It is somewhat surprising that the piecewise-linear CDF obtained by simply 
drawing straight lines between empirical-percentile points of an empirical CDF 
is the .. same distribution that is obtained by using the Maximum Entropy 
Formalism (MEF; to be discussed in the next section) and constraints specified 
by empiri(:al percentile points. 

The Maximum Entropy Formalism 

The litElrature on the Maximum Entropy Formalism (MEF) is now vast; the reader 
should consult the reviews edited by Levine and Tribus (1978), or the recent 
monograph by Jumarie (1990), for thorough discussions of the foundations and 
areas of a?plication of this subject. The MEF has been used before to 
construct )rior probability distributions of uncertain variables in nuclear­
risk asses:;ment models: See Cook and Unwin {1986) and Unwin et al. (1989). 

In this .report, the MEF is simply regarded as a consistent mathematical 
procedure for the derivation of a probability distribution function for an 
uncertain Yariable, X, from a set of quantitative constraints on the form of 
that distribution; e.g., quantitative statements about the range, the mean, 
the variance, or the percentiles of the distribution. The quantitative 
constraints may be empirical constraints, i.e. constraints based on sample 
values of the variable, or subjective constraints based on professional 
judgment. 

The central problem of the MEF is the determination of extrema of the so­
called gn~>py functional, defined by 

b 

S(f) - J f(x)£n(f(x))dx, 

a 

over the set of all probability density functions, f(x), which are nonzero in 
the range (a,b] and which satisfy prescribed, quantitative constraints. 

The entropy functional is the continuous version of the information-theoretic 
entropy 

s - · k ~ Pi £n Pi , 
i 

i.e., it is the expected value of Shannon's measure, 

I(X
1

) = -kin P1 , k a constant , 
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Chaphr II: Procedures for Constructing Probability Distributions 

of the amount of information gained by observing the outcome of an experiment 
2 in which a random variable Xi is observed to take on the value Xi with 
3 probability Pi (Hamming 1991; Ch. 7), The entropy functional has also been 
4 interpreted as a measure of the amount of uncertainty inherent in a PDF or as 
5 a measure of the amount of information that would be required to specify 
6 completely the value of a random variable X (for the idea that entropy is 
1 "missing" information, see Baierlein, 1971). Thus, finding an extremum of the 
6 entr)py functional subject to prescribed constraints can be construed as 
9 findlng the PDF, within the set of all PDFs that incorporate the information 

10 inhe~~ent in the constraints, which maximizes the amount of remaining 
11 info::mation that must be supplied in order to completely specify the value of 
12 the uncertain variable X. Use of the MEF can minimize the amount of spurious 
13 infol:mation that often enters into the construction of a PDF from sparse data 
14 or 1 imi ted quantitative information. 
15 

16 

17 

18 

30 

31 

32 

33 

34 

35 

36 

~~ 
li 
i9 
t~ 
g~ 

iJ 

The frescribed informational constraints are best expressed as integral 
constraints, i.e., they should take the form 

C , m- 0, 1, 2, ... , M , 
m 

where the gms are given, integrable functions of x on the interval [a,b] and 
the C1ns are given constants. One necessary constraint on a PDF is that its 
integ::al over [a,b] must equal one; thus one conventionally takes go= 1 and 
Co- l, By expressing the constraints in this way, one can derive a general 
solut:~on to the problem (in the calculus of variations) of maximizing S(f) 
subje<~t to the M+l constraints (see, for example, Tribus, 1969). The 
maximJ.zing PDF, here denoted by f*(x), is given by 

* -1 
AK) exp [ -

M l f(x) z ().1, ).2' • 0 I, ~ A g (x) 
' m m 

m=l 

where z·l is the reciprocal of Z and 

~ I exp [ 
M 

Z(Al' .:\ 2 , •.. ' .:\M) ~ A g (x) l dx . 
rom 

a m=l 

~~ The Am, 1 ~ m ~ M, are constants (Lagrange multipliers) to be determined by 
60 solvin.~ the following set of M equations in M unknowns: 
61 

62 -(8/8.:\m)inZ = Cm, 1 $ m $ M . 
63 
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The Maximum Entropy Formalism 

The specLal forms of f*(x) that arise from this formalism when the constraints 
mentioned in the outline of the five-step procedure are applied are of 
particul.1r interest: 

a. Wh1m only the range of X is given (i.e., no constraints other than 
no:~malization of the PDF), then f*(x) is the uniform distribution on the 
in1:erval [a,b]. Obviously, this makes sense only if Jb-aJ < oo , i.e, 
thn range of the variable X is bounded. 

b. Whtm the range and M percentile points of the CDF are given, then f* (x) 

is a weighted sum of M uniform distributions that vanishes outside the 
·range [a, b] and the associated CDF is piecewise linear. In this case, 
thE~ M ~ 1 constraints are of the form 

gm(x)- u(xm- x), Cm = Pm• m = 1, 2, 3, , , ., M, 

whe,re u( •) is the unit step function (Abramowitz and Stegun, 1964, p. 
10~:0, 29 .1. 3), the xms are given percentile points in the interval 
[a,b], and the PmS are the corresponding percentiles. 

c. \.Jhen the range, the mean value, and the variance (or coefficient of 
vat·iation) of the variable X are given, then f*(x) is a truncated normal 
distribution that vanishes outside the interval (a,b]. In this case, 
the two constraints are of the form 

where ~ and o2 are respectively the given mean value and variance. 

d. When the range and only the mean value of the variable X are given, then 
f*(x) is a truncated exponential distribution that vanishes outside the 
interval [a, b] . In this case, g1 = x and C1 - p.. 

Proofs of Cases a, c, and d can be found in Tribus (1969). The author has not 
been able to locate a proof of Case b and has therefore supplied his own proof 
below. 

Let the empirical or subjective percentile points be the given as M ~ 1 
ordered pairs (xl,Pl), (xz,p2), ... , (xM,PM) with 

0 :S a < Xl < X2 < . , , < XM < b < oo; Pl < P2 < · · · < PM 
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Chapter II: Pocedures for Constructing Probability Distributions 

and 0 < :)m < 1 for all m > 0. For convenience, de fine 

xo = a, PO = 0; XM+t= b, PM+t= 1 

The cons·:raints on the candidate PDFs, f(x), may then be written as 

b 
J u(xm ~ s)f(s)ds = Pm• m 
a 

0, 1, 2, ... , M+l , 

where u(") is the unit step function (Abramowitz and Stegun, 1964, p. 1020). 
The PDF 1:hat maximizes the entropy functional is therefore 

f*(x) = exp[~ >.mu(xm - x) ~ 1] , 
m-1 

where ·thH >..ms are constants to be determined from the constraints. 
Inspection of this PDF shows that it is a piecewise~constant function on the 
interval [a,b]; i.e., f*(x) =Am, if Xm~1 < x s Xm, with Am a different 
constant for each m- 1, 2, ... , M+l. The constants Am are simply related to 
the const:ants >.m, and it is easier to determine the Ams from the 
constraints. For example, consider the integral of f*(x) between Xm-1 and 
Xm· This integral is (xm ~ Xm~t)Am, but by the constraints it is also equal 
to (Pm ~ Pm~1). It follows that 

Am- (Pm- Pm-1)/(xm ~ Xm~l), m = 1, 2, ... , M+l. 

By integ1·ating f*(x) =Am, m = 1,2, ... ,M+l, between xo = a and a point .; > 
a, one finds the CDF associated with f*(x): 

{~m-1 + (pm - pm-1)(( - xm-1)/(xm -

if 0 < e ::s; a, 

F*(t;) X 1), if xm-1 < e ::S X m' m-

if e > b 

This res1.:.lt is a piecewise-linear CDF of the kind described earlier in this 
chapter. 

Once again, the reader should take note that in using the MEF, the ranges, 
percentiles and percentile points, mean values, and variances to be supplied 
in Cases a through d can be either empirical or subjective numbers; that is, 
they can be numbers derived from measurements of the variable X, or they can 
be furnished as the "best estimates" of the Rls. Of course, if only 
subjective estimates are used to form the parameters of an MEF distribution, 

II-10 

I 

I 

I 

I 

\ 
I 

\ 

I 
I 
I 

I 



The Maximum Entropy Formalism 

it is meanlngless to inquire whether that distribution is an unbiased 
2 estimator ,>f the unknown distribution, F(x). The resulting distribution is 
3 pu;:ely subJective and can only reflect the accuracy of the Pis' best estimates 
4 of the dis1:ribution' s parameters. 
5 

6 

7 An Application of the Procedures 
8 

9 The most recent simulations of WIPP performance used probability distributions 
10 obtained by the five-step procedure described above. The results of this 
11 first, informal trial of the procedure are summarized in Table II-1: column 1 
12 of the table names the 2.9 variables that were sampled in the recent 
13 simulations and gives their physical units; column 2 names the kind of 
14 distribut:ion that was ultimately assigned; and column 3 briefly states the 
15 source of information and the basis for the assignment of the distribution 
16 named in column 2. 
17 

18 In this fir;t trial of the procedures, no formal elicitation of expert 
19 judgment of the type suggested by Bonano et al. (1990) was used, A memo was 
20 sent to WIP:) Project Ris in Department 6340 of Sandia National Laboratories 
21 asking that they provide any information they might have concerning each of 
22 the 29 variables; the requested information was to be supplied in one or more 
23 of the following forms and listed in order of decreasing preference on the 
24 part of the performance-assessment analyst: 
25 

26 {1) A table of WIPP~specific, measured values of the variable, 
27 

28 (2) Reasor.ed estimates of percentile points for the variable; i.e. the 
29 provision of statements like 11 90 percent of solubility values for 
30 radionuclide species A lie below l0-4 molar." 
31 

32 (3) Retu•oned estimates of tht)' mean value and standard deviation of the 
33 vari.able. 
j4 

35 (4) Reasoned estimates of only the mean value of the variable. 

36 

37 

38 

39 

40 

41 

42 

43 

44 

(5) At minimum, and always in addition to information of types 1 through 4, 
reason~d estimates of the maximum and minimum values (range) that the 
variable could assume in the context of the WIPP system. 

In addition :o a written request for information, informal meetings were held 
with the Pis in order to explain the purpose of the request for information 
and to help 1;heir understanding of some of the statistical terms used in the 
memorandum. These informal meetings revealed that some of the Rls were 
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TABLE 11-1. PROBABILITY DISTRIBUTIONS FOR VARIABLES SAMPLED IN CURRENT WIPP PERFORMANCE SIMULATIONS* 

Variabie Name and Units 

1. Salado Capacitance (Pa-1) 

2. Salado Permeability (m3) 

3. Salado Pressure (MPa) 

4. Room-Waste Solubility 
(all radionuclide species, kg/kg) 

5. Room-Time of First Intrusion 

6. Brine Pocket Initial Pressure (MPa) 

7. Borehole Permeability m2 

e. Borehole Porosity (dimensionless) 

9. Brine Pocket Bulk Volume (rn3) 

10. Culebra Tortuosity (dimensionless) 

11. Culebra Diffusion Coefficient 
(all radionuclide species, m2fs) 

12. Culebra Fracture Spacing (m) 

Type of Distribution 

Lognormal 

Piecewise Linear 

Uniform 

logunifonn 

Modified Exponential 

Piecewise Unear 

Lognormal 

Normal 

Uniform 

Piecewise Unear 

Uniform 

Piecewise Unear 

Source or Basis for Distributiont 

Assigned by AI. 

MEF-empirical percentiles from data provided by AI. 

MEF-bound provided by At. 

Assigned by Rl. 

Appendix C of Tierney ~n prep.). 

MEF-bounds and median provided by Rt. 

Freeze and Cherry, 1979. 

Freeze and Cherry, 1979. 

MEF-bounds provided by Rl. 

MEF-empirical percentiles from data in Tables E-9 of 
Lappin et al., 1989. 

MEF-bounds are maximum and minimum of values given 
in Table A-8 of Rechard et al., 1990a. 

MEF-bounds and median provided by AI. 

* A complete description of the probability distributions for all variables used in the 1990 performance simulations can be found in 
Rechard et al. (1990b). 

t The Rls' responses that provided the sources or basis for each distribution are documented in Memos 3-11 and Letters 1 a and 1 b of 
Appendix A of Aechard et al. (1990b). 
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TABLE 11-1. PROBABIUTY DISTRIBUTIONS FOR VARIABLES SAMPLED IN CURRENT WIPP PERFORMANCE SIMULATIONS 
(concluded) 

Variable Name and Units 

13. Culebra Recharge Factor 
(dimensionless) 

14. Culebra Precipitation Factor 
(dimensionless) 

15. Borehole cross-sectional area (m2) 

16-19. Culebra- Matrix Retardation 
Factors for Plutonium, Americium, 
~eptunium and Uranium 
(dimensionless) 

20-23. Culebra - Fracture Retardation 
Factors for Plutonium, Americium, 
Neptunium and UraniUm 
(dimensionless) 

24-29. Culebra Hydraulic ConductMty 
for Zones 1-7 (m/s) 

Type of Distribution 

Uniform 

Uniform 

Empirical 

Piecewise Unear 

Piecewise Unear 

Piecewise Unear 

Source or Basis for Distribution 

Marietta et al., in prep. 

Marietta et af., in prep. 

Data provided by Rl. 

MEF-subjective percentiles (0, 25, so, 75, 1 00) provided 
byRI. 

MEF-subjective percentiles (0, 25, 50, 75, 100) provided 
byRL 

MEF-empirical percentiles from data provided by Rl. 
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Chapter II: Procedures for Constructing Probability Distributions 

confused about the meanings of the several measures of the shape of a 
2 probability distribution (Figure II-2), In subsequent meetings, most of the 

3 Ris agreed that, in the absence of data, they could not supply reasoned 
4 estimates of the mean value, p., or standard deviation, u, of the unknown 
5 distribution and that the measures of location they had previously called 
6 "expected values" were more likely to be estimates of the median value, xso, 
7 or the node, Xmax, of the distribution, 
8 

9 If the n provided the range (a,b) and an estimate of the median, XSO• the MEF 
10 yielded the simple, piecewise-linear CDF illustrated in Figure II-3. 
11 Providing a sub j ec ti ve estimate of the mode of an unknown PDF was discouraged. 
12 In the absence of additional information about the value of the PDF at the 
13 mode (information usually not known to an RI), the use of a subjective mode as 
14 a const1:aint in the MEF only gives back the uniform distribution over the 
15 range (a, b) , the same distribution that arises if the range alone is 
16 speci:fiEid. 
17 
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TRI-6342·580-0 

Figure 11-2. Typical PDF Showing the Different Measures of Location. 

1.0 
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TRI-6342·667-0 

5 Figure 11-3. Piecewise-Linear CDF Based on Range and Median Value. 
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Ill. LIMITATIONS ON THE 1990 
PROBABILITY DISTRIBUTIONS 

5 The major limitations on the validity of the probability distributions 
6 constructed for the 1990 performance simulations are believed to be the 
7 consequence of two things: 
8 

9 (1) Th~! effects of spatial averaging on the variance of model variables 
10 

11 

USEld in lumped-parameter models were ignored. 

12 (2) Possible correlations between model variables were ignored. 
13 

14 

15 The Effects of Spatial Averaging 
16 

17 Since most of the WIPP performance models are lumped-parameter models, many of 
18 the variables to be assigned CDFs in the WIPP performance models are actually 
19 spatial averages of physical quantities that can only be measured on spatial 
20 scales that are small compared with the spatial scale used in the models. For 
21 example, the effective hydraulic conductivity and porosity of a WIPP waste 
22 room (a stru~ture having a volume of the order of 1000 m3) are actually 
23 volumetric a·.rerages over the local hydraulic conductivity and porosity of 
24 approximatel:r 1000 consolidated waste units (collapsed waste barrels) each 
25 having volum,~s of the order of one cubic meter. The RI usually provides 
26 information .1bout variability of a quantity on the smaller of the two spatial 
27 scales. It is easy to show that use of this small-scale variability to 
28 reflect direGtly the variance in the lumped-parameter model variable will 
29 result in unnecessarily conservative CDFs. Very roughly, the following 
30 relationship holds between the variance of a volumetric average and the 
31 variance of 1:he "local," small-scale quantity: 
32 

40 

41 

42 

43 

44 

45 

46 

a
2 

"" (v/V)a1
2 

ave oc 

where v is a correlation volume and V is the volume over which the local 
physical quantity is to be averaged (analogous relationships hold for linear 
and areal av1!rages). Although the precise size of the correlation volume is 
not known in every case, it is usually known that v << V. It follows that the 
variance of ;! volumetric average may be much smaller than the apparent 
variance of ·:he local quantity. On the other hand, the mean value of the 
volumetric ~rerage should be equal to the mean value of the local quantity. 
The picture nf the PDF for a spatial average that emerges from these remarks 
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is onH cf a distribution that is sharply peaked about the mean value of the 
local quantity. In the absence of other kinds of information indicating 

3 uncert:ainty in the mean value of the local quantity, it would be inefficient 
4 to sample from such a highly peaked distribution; the variable in question 
5 would simply be assigned the best estimate of the mean value of the local 
6 quanti.ty. 
7 

8 Thus, in seeking more information about those model variables that are known 
9 to be sp~tial averages of local quantities, it may be necessary to ask that 

10 experts "?rovide scales of measurements and correlation lengths, and state 
11 their es ~imate of the uncertainty in the mean value of the local quantity, in 
12 addition to providing the observed or perceived variability of the local 
13 quantity itself. 
14 

15 

16 Correlations Between Model Variables 
17 

18 All of the uncertain variables studied during the 1990 performance simulations 
19 were ass\~ed to be independent random variables, although it was known in 
20 advance that many of them were interdependent, i.e. correlated in some way. 
21 Correl.!lti.ons of the model variables may arise from the fact that there are 
22 natural correlations between the local quantities used to determine the form 
23 of the mc,del variable (e.g., local porosity could be strongly correlated with 
24 local pet·meability); or correlations of model variables may be implicit in the 
25 form of the mathematical model in which they are used. As an example of the 
26 latter circumstance, the current model for predicting WIPP~room hydraulic 
27 conducthity and porosity (see Rechard 1990b, Chapter III) makes these 
28 variables depend upon the volume fractions of specific waste forms (i.e., 
29 fractions of combustibles, metallics, sludges, etc.) contained in the entire 
30 waste inventory. These volume fractions are obviously uncertain variables 
31 themselves even though they were not treated as variables in the 1990 
32 performance simulations, Taking account of the uncertainty in volume 
33 fractions would change estimates of the uncertainty in the mean value of the 
34 WIPP~room hydraulic conductivity and porosity. 
35 

~ CorrelatiJns among the important variables of the WIPP performance models need 
37 to be examined in detail since these model-dependent correlations may either 
38 increase ·)r decrease the variance of a particular variable, and therefore 
~ effectively change the shape of that variable's CDF. 
40 
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2 

3 

GLOSSARY 

4 ccdf ~ see eomplementary C\llllulative distribution function. 
5 

6 cdf - see cumulative distribution function, 
7 

------------------------------

s complementary cumulative distribution function (CCDF) - One minus the 
9 cumulative distribution function. 

10 

11 Culebra Dol<:·mite Member - The lower of two layers of dolomite within the 
12 Rustler Forrration that are locally water bearing. 
13 

14 cumulativE! distribution function - The sum (or integral as appropriate) of 
15 the probability of those values of a random variable that are less than or 
16 equal to a specified value. 
17 

18 empirical - ~elying explicitly upon or derived explicitly from observation or 
19 experiment. 

20 

21 exponential distribution - A probability distribution whose PDF is an 
22 exponential :':unction defined on the range of the variable in question, 
23 

24 hydraulic conductivity - The measure of the rate of flow of water through a 
25 unit cross-sectional area under a unit hydraulic gradient. 
26 

27 lognormal dhtribution - A probability distribution in which the logarithm of 
28 the variable in question follows a normal distribution. 
29 

30 loguniform distribution - A probability distribution in which the logarithm 
31 of the variable in question follows a uniform distribution. 
32 

33 mean- The expectation of a random variable; i.e., the sum (or integral) of 
34 the product: of the variable and the PDF over the range of the variable. 

35 

M median ~ That value of a random variable at which its CDF takes the value 
37 0. 5; i.e. ' the soth percentile point. 

38 

39 mode ~ That w1lue of a random variable at which its PDF takes its maximum 

40 value. 

41 

42 normal distribution - A probability distribution in which the PDF is a 
43 symmetric, be:~l- shaped curve of bounded amplitude extending from minus 

44 infinity to p:_us infinity. 

45 



Glossary 

PDF - see probability density function. 
2 

3 porosity ·· The percentage of total rock volume occupied by voids, 
4 

5 probability density function - For a continuous random variable X, the 

6 function giving the probability that X lies in the interval x to x + dx 

7 

8 

9 

10 

11 

centered about a specified value x. 

solubility - The equilibrium concentration of a solute when undissolved 

solute is in contact with the solution. 

12 subjective - The opposite of empirical: not supported by explicit records of 
13 measurements or experiments. 
14 

15 tortuosity - A measure of the actual length of the path of flow through a 

16 porous medium. 

17 

18 truncated distribution - A probability distribution whose curve is defined on 

19 a range of variable values that is smaller than the range normally associated 

20 with the distribution: e.g., a normal distribution defined on a finite range 

21 of variable values. 

22 

23 uniform distribution - A probability distribution in which the PDF is 

24 constant over the range of variable values. 

25 

26 variance - The square of the standard deviation of a probability 

27 distribution; the standard deviation is a measure of the amount of spreading 

28 of a PDF about its mean. 
29 
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